Publications

  1. Jing Bai and Yu Yao, “Highly efficient anisotropic chiral plasmonic metamaterials for polarization conversion and detection”, Accepted, ACS Nano, 2021.
  2. Zhi Zhao Xiahui ChenJiawei Zuo, Ali Basiri, Shinhyuk Choi, Yu Yao, Yan Liu *, and Chao Wang *, “Deterministic Assembly of Single Emitters in Sub-5 Nanometer Optical Cavity Formed by Gold Nanorod Dimers on Three-Dimensional DNA Origami ” Accepted, Nano Research, 2021, arXiv:2104.02916 . (arXiv:2104.02916 )
  3. Inam Ridha, Ali Basiri, Sudhakar Gudesala, Deepanjan Ghosh, Jung Keun Lee, Jacquelyn Kilbourne, Yu Yao, Kaushal Rege, “Chromophore-free Sealing and Repair of Soft Tissues using Mid Infrared Light-Activated Biosealants”,  Advanced Functional Materials (2020): 2007811 https://doi.org/10.1002/adfm.202007811
  4. Zhi Zhao, Jing Bai, Yu Yao, Chao Wang, “Printing continuous metal structures via polymer-assisted photochemical deposition”, Materials today, in press. https://www.sciencedirect.com/science/article/abs/pii/S1369702120300742
  5. A. Basiri, X. Che, J. Bai, P. Amrollahi, J. Carpenter, Z. Holman, C. Wang, Y. Yao, “Nature-Inspired Chiral Metasurfaces for Circular Polarization Detection and Full-Stokes Polarimetric Measurement”, Light Science & Applications 878 (2019).   https://www.nature.com/articles/s41377-019-0184-4figure1
  6. Jing Bai, Chu Wang, Xiahui Chen, Ali Basiri, Chao Wang, Yu Yao, “Chip-integrated plasmonic flat optics for mid-infrared Full-Stokes polarization detection”, Photonics research, 7, 1051-1060, 2019.  https://www.osapublishing.org/prj/abstract.cfm?URI=prj-7-9-1051
  7. Zhao, Zhi, Ninad Chamele, Michael N. Kozicki, Yu Yao, and Chao Wang. “Photochemical Synthesis of Dendritic Silver Nano-particles for Anti-counterfeiting.” Journal of Materials Chemistry C (2019).https://pubs.rsc.org/is/content/articlelanding/2019/tc/c9tc01473j#!divAbstractGraphical abstract: Photochemical synthesis of dendritic silver nano-particles for anti-counterfeiting
  8. B. Zeng, Z. Huang, A. Singh, Y. Yao, A. K. Azad, A. D. Mohite, A. J. Taylor, D. R. Smith and H. T. Chen, “Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging,” Light: Science & Applications, vol. 7, p. 51, 2018/08/22 2018.  https://www.nature.com/articles/s41377-018-0055-4,Spatial light modulator
  9. Xiahui Chen, Chu Wang, Yu Yao*, and Chao Wang*, “Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing“, ACS Nano Article ASAPDOI: 10.1021/acsnano.7b02687 (* corresponding authors)ODT sensing
  10. Zeming Song, Cheng Lv, Mengbing Liang, Varittha Sanphuang, Kedi Wu, Bin Chen, Zhi Zhao, Jing Bai, Xu Wang, and John L. Volakis, Liping Wang, Ximin He, Yu Yao, Sefaattin Tongay, Hanqing Jiang, “Microscale Silicon Origami,” Small, vol. 12, pp. 5401–5406, 2016.
  11. Y. Yao, M. A. Kats, R. Shankar, Y. Song, J. Kong, M. Loncar, and F. Capasso, “ Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators”, Nano Letters, Article ASAP, DOI: 10.1021/nl503104n
  12. Ultra-thin optical modulator based on tunable metasurface perfect absorber
      Ultra-thin optical modulator based on tunable metasurface perfect absorber
  13. Shuyan Zhang, Mikhail A Kats, Yanjie Cui, You Zhou, Yu Yao, Shriram Ramanathan, and Federico Capasso, “Current-modulated optical properties of vanadium dioxide thin films in the phase transition region,” Appl Phys Lett, vol. 105, pp. 211104, 2014.
  14. Y. Yao, M. A. Kats, R. Shankar, Y. Song, M. Loncar, J. Kong, and F. Capasso, “Wide wavelength tuning of optical antennas on graphene with nanosecond response time”, Nano Letters, 14, 214-219, 2014.
  15. electrically tunable optical antennas
      electrically tunable optical antennas
  16. Y. Yao, R. Shankar, P. Rauter, Y. Song, M. Loncar, J. Kong, and F. Capasso, “High responsivity mid-infrared graphene detectors with antenna enhanced photo-carrier generation and collection”, Nano Letters, 14, 3749–3754, 2014.
  17. antenna enhanced graphene detectors
      antenna enhanced graphene detectors
  18. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas”, Nano Letters, 13, 1257–1264, 2013.tunable optical antennas
  19. Y. Yao, A.J. Hoffman, and C.F. Gmachl, “Mid-infrared quantum cascade lasers”, (invited) Nature Photonics, 6, 432-439, 2012.
    Semiconductor heterostructure_TEM and band diagram quantum cascade laser

      Semiconductor heterostructure_TEM and band diagram quantum cascade laser
  20.  R.T. Moug, H. Sultana, Y. Yao, A. Alfaro-Martinez, L. Peng, et al. “Optimization of Molecular Beam Epitaxy (MBE) Growth for the Development of Mid-Infrared (IR) II–VI Quantum Cascade Lasers”, J. Electron. Mater., 41, 944-947, 2012.
  21. Y. Yao, A. Alfaro-Martinez, K.J. Franz, W.O. Charles, A. Shen, et al. “Room temperature and narrow intersubband electroluminescence from ZnCdSe/ ZnCdMgSe quantum cascade laser structures”, Appl. Phys. Lett.,99, 041113,2011.
  22. quantum cascade structures based on II-VI semiconductor materials
      quantum cascade structures based on II-VI semiconductor materials
  23. E. Mujagic, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and Gottfried Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays”, Appl. Phys. Lett., 98, 141101, 2011.
  24. surface emitting ring laser array for broadband laser sources
      surface emitting ring laser array for broadband laser sources
  25. Y. Yao, X. Wang, J. Fan and C. F. Gmachl, “High performance ‘continuum-to-continuum’ Quantum Cascade lasers with a broad gain bandwidth over 400 cm-1”, Applied Physics Letters, 97, 081115, 2010.Broadband mid-infrared laser design for widely tunable light sources
      Broadband mid-infrared laser design for widely tunable light sources
  26. Y. Yao, T. Tsai, W.O. Charles, J. Chen, G. Wysocki and C. F. Gmachl, “Broadband Quantum Cascade laser gain medium based on a “continuum-to-bound” active region design”, Applied Physics Letters, 96, 211106, 2010.
  27. E. Mujagic, C. Schwarze, W. Schrenk, Y. Yao, J. Chen, C. F. Gmachl, G. Strasser, “Strategies toward the realization of two-dimensional broadband and coherent quantum cascade ring laser arrays”, Optical Engineering 49(11), 111113, 2010.
  28. C. Schwarzer, E. Mujagić, Y. Yao, W. Schrenk, J. Chen, C. Gmachl, and G. Strasser, “Coherent coupling of ring cavity surface emitting quantum cascade lasers”, Appl. Phys. Lett. 97, 071103 (2010).
  29. W. O. Charles, Y. Yao, K. J. Franz, Q. Zhang, A. Shen, C. Gmachl and M. C. Tamargo, “Growth of Znx’Cd(1-x’)Se/ZnxCdyMg(1-x-y)Se -InP Quantum Cascade structures for emission in the 3 – 5 µm range”, J. Vac. Sci. Technol. B Vol. 28, Issue 3, pp. C3G24-C3G27, 2010.
  30. K.J. Franz, P.Q. Liu, J. Raftery, M.D. Escarra, A.J. Hoffman, S.S. Howard, Y. Yao, Y. Dikmelik, X. Wang, J. Fan, J. B Kurgin, C. Gmachl, et al. “Short Injector Quantum Cascade Lasers”, IEEE J. Quantum Electron., 46, 591-600, 2010.
  31. Y. Yao, K. J. Franz, X. Wang, J. Fan, C. F. Gmachl, “A widely voltage-tunable Quantum Cascade laser based on “two-step” coupling,” Applied Physics Letters, 95, 021105, 2009.
  32. Y. Yao, Z. Liu, A. J. Hoffman, K. J. Franz, C. F. Gmachl, “Voltage tunability of Quantum Cascade lasers,” IEEE J. Quantum Electron, Vol. 45, No. 6, pp. 730-736, June 2009.
  33. C. Young, R. Cendejas; S. S. Howard, W. Sanchez-Vaynshteyn, A. J. Hoffman, K. J. Franz, Y. Yao, B. Mizaikoff, X. Wang, J. Fan, C. F. Gmachl. “Wavelength selection for Quantum Cascade lasers by cavity length”, Applied Physics Letters, 94, 091109, 2009.
  34. Y. Yao, Xiangfei Chen, Yitang Dai, and Shizhong Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. vol. 18, no.1, pp. 187-189, Jan. 2006.
  35. Y. Dai, X. Chen, J. Sun, Y. Yao, S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method”, IEEE Photon. Technol. Lett. Vol. 18,  No. 18,  pp. 1964 – 1966  Sep. 2006.
  36. Y. Dai, X. Chen, J. Sun, Y. Yao, S. Xie, “Dispersion compensation based on sampled fiber Bragg gratings fabricated with reconstruction equivalent-chirp method”,  IEEE Photon. Technol. Lett. Vol. 18, No. 8, pp941-943, April 2006.
  37. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction equivalent-chirp technique”, Opt. Lett., vol, 31, pp. 1618-1620, 2006.